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1. Introduction

Reference 15] formulated a queueing model to address the problem

of determining the optimum number of spares and repair channels for a pop-

ulation of stochastic failing units. The model assumed that  a requirement

for a high availability of spares was imposed and approximated the multi—
stage service system with a series queue. Under the same assumptions as

in Reference (5] ,  i.e., exponential failure and service times, this paper
formulates the problem as a cyclic queue for which an exact solution is

tractable. This exact model can be considered as an extension of the

classic machine repair problem with spares, Reference (1].

Section 2 of this paper deals with definitions and notation. The

classic machine repair problem and its logical extension to many repair
stages is first discussed. Then a cyclic queue is defined . Next the ex-

tended machine repair problem is framed as a cyclic queueing system , for
which the literature has applicable results. The section concludes with

the definition of availability.

Section 3 reviews and categorizes three key results from the lit—

erature in the field of networks and cyclic queues. Section 4 formulates

________________________________________________________________ 
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both the approximate model of [51 and the exac t model of this paper.

Section 5 compa res the accur ac y and computational characteristics of the

two models for gas tu rb ine  engine data from [ 5 ) .  Section 6 presents the

conclusions .

2. Def in i t ions  and Nota t ion

2.1 Classic Machine Repair Problem

The classic machine repair  problem wi th  spa res consists of a fixed

number of identical machines of which i n i t i a l l y  N are operating and y

are spares , i. e . ,  the f ixed tota l population is M+y . By Iden t i c a l  is

meant the machines have the same d is t r ibut ions  for f a i l u r e  and service

t i mes , and that  there are no priori t ies  or queue disciplines other th an

f i r s t  come , f i r s t  served.

The N machines are In paral le l  and are independent .  When one

fai ls  in service , it is instantaneously replaced by a spare , i f one is

available. If not , less t han N machines w i l l  operate un t i l  a repaired

machine becomes available. Simultaneousl y,  the fa i led  machine goes in-

st antaneously Into a repair fac i l i ty  from which , once repaired , it goes

instantaneously Into the spare parts pool (or d ir e c t l y  into service , if

less than M machines are operating). This process is shown in Figure 1.

The following assumptions are now made :

(a) the system failure rate is proportional to the number of
operating machines,

(b) each machine has exponential failure time s wi th  mean 1/A

(e) there are c parallel servers (repair  channels) in the
repair f ac i l i t y ,

(d) each server has exponential service t imes wi th  mean I/ p

Letting n equal the number of “down” machines in the repair facility,

the problem becomes a Markovian birth—death process with parameters

— 2 —  
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Figure l.——Classic machine repair problem.
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MA , O < n ~~~y

A~~~ (M— n+y ) A , y~~~ n < M + y ,

0 ,

and

n p ,  O < n < c

c p ,  n .~~c

The solut ion fo r p , the probability that there are n machines

in the repair phase , can be found on page 123 of [ 4 ] .

2 . 2  ExtensIon of ihe Machine Repair
Problem to Many Stases

A logical extension to the classic machine repair problem wi th

spares is to introduce more than one step into the repair phase . These

addit ional steps , or stages , could represen t the removal of a f ailed

machine, the transportation to the repair facility, the repair Itself ,

transportation from the repair facility , etc., until it is returned to the
spare parts pool. Such a model Is sh own in Figu re 2 , whe re each addi t ional
stage consists of a number of parallel servers wi th  exponential service t imes .

The s traightforward application of the Markovian bir th-death process

is no longer directly applicable as before . Reference [5] solves this
extended model by imposing a hi gh avai labi l i ty  cons t ra in t  on the spare
pa r ts , the n making a s impl i fy ing  assumption that  the operating stage acts

as an infinite source ( t rue Poisson ) input process to a series (multi—stage

repair) queue. The model of this paper solves the extended model by treating

it as a cyclic queue, without any requirement for high availability.

2.3 Cyclic Queueing System

Figure 3 represents a cyclic queueing system. There is a total of

N identical customers in the K separate stages of the system. Each stage

consists of c~ parallel servers, each with exponentially distributed service

times with mean , i—l , 2 , .. ., K . The system Is closed , i.e., no
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Figure 2. ——Exten sion of classic machine repair problem .
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Figure 3.——Cyclic queueing system.
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~~ customers enter or leave the sy s tem.  Upon being served , a customer goes

~ di r ec t ly  to the next  st age . if  a serve r is f ree , the  customer  goes d i r e c t l y

into service. If  not , the custome r forms or jo ins  a queue , w h i c h  can never

be block ed ( i .e . ,  i n f i n i te  w a i t i n g  room between s t a g e s ) .  Upon comple t i ng

the Kth stage , the customer goes d i r e c t l y to the f i r s t  s tage and s t a r t s
the cycle  over.

Le t t i ng n~ , c~ , an d p 1 represent  the number of customers ,

pa r a l l e l  servers , and exponent ia l  service mean ra te , respect ive l y ,  .~ t the
i th  s tage , i 1 , 2 , ... , K , we have the f o l l o w i n g  re lat ionsh ip s :

fl~~ j i~~ , fl . <

service rate at  i t h  stage
fl~ > C

1

and

K
total number of customers in the K stages of the system = N = ~~ n1i= 1

2.4  Machine Repair Problem as a Cyclic Oueue

The extended machine repair  problem wi th  spares wi l l  now he framed

as a cycl ic  queue . Of the  K stages of the c y c l i c  queue , the  f i r s t  stage
represents the opera t ing machines.  The c 1 paral le l  serve rs at the f i r st

j . stage ca n be considered to be the M operat ing machines of the classic

problem (c
1 

= M) . Machi nes th a t f a i l in Stage I go di rec t ly  to Stage 2 ,

a removal phase . There are c2 para llel servers there  which represent the

number of “machine remqvers” p resent.  A f t e r  removal , machines go to Stage

3, say a t ransportat ion phase , th en to Stage 4 , etc.  At the i th  stage
( 1 l ,2 , . . .  ,K) , the re are c 1 pa rallel  servers , each wi th  an exponential

service rate p 1 . Note tha t  c1 ca n be set to the to ta l  population size ,

• N , In the system (i.e., e f f e c t i vely set to i n f i n i t y )  to represent an ample
server stage , with no p o s s i b i l i t y  uf  a queue forming in f ro nt of tha t stage .
This might be appropriate for removal and transportation phases.

— 7 —
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After leaving the Kth stage , the machine returns to Stage I ready

for service. I f  less than c
1 

(i.e., M) machines are operating, the newly

repaired machine goes righ t into service. if all c
1 ser vers a re busy

(i.e., all M are “up”) the newly repaired machine either starts a queue or

joins an existing one in front of Stage 1. ThIs queue represents the spare

machines on hand (i.e., the inventory).

Table 1 compares the terminology between the machine repair problem

and the cyc l ic  queu eing system.

TABLE 1

CONP A RATIVE TERM INOLOGY

NOTATION MACHINE REPAIR PROBLEM CYCLIC QUEUE

Number of Operat i ng H c1Machines -

Machine Failure Rate A p1

Total Number of Machines M+y N

Number of Spa res y N —

Size of Inventory - 
- N + y — Number Queue Size

(Spa re Parts Pool) in Repair Phase at Stage 1

2.5 Defini t ion of Availabi l i ty

Suppose there are three spare machines In the inventory , i.e. , a
queue of size three in front of Stage I. If an o p e r a t i n g  machine fails , a
spare is instantaneously pul led from the inventory and put into service.

Therefore, at the time of a failure , a spare is available. Now assume

that the queue has shrunk to one spare . Again , I f  an ope rat ing machine

fa i l s , a spare is available.  At t h i s  point , the queue size is ze ro and

no spares are available , but the operating system Is unconcerned ; the

operating system looks to the inventory oi~ly when an operat ing machine

— 8 —
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f ai ls , and at no other time . By the time another machine fails , a newly

repaired machine might have arrived from the Kth phase , resulting in a

pos i t i ve queue aga in .  In other words , even though temporarily no spares

were available, the operating system does not know or care about it

unless a fa i lure  occurs . As long as M mach ines are up without interrup-

tion, the availability of spares is not a factor  in the operation . There-

fore, the definition of availability involves conditioning on the occurrence

of a failure. More precisely,

AVAILABILITY = probability that the spares inventory
is not empty given that a failure is
about to take p lace

probability that the queue size at
Stage 1 is greater than 0 given that
a failure is about to take place .

An algebraic expression for these “failure point probabilities ” in

- 

terum of the “general time probabilities” can be derived from Bayes ’ theo—

1
rem. First, define

P(n 1) gene ral t ime probabi l i ty  that  there
are n

1 
customers at Stage 1

and

Q(n
1
) — conditional (or failure point) prob—

ability that there are n
1 

customers

at Stage 1 given that a failure is
about to occur.

By Bayes’ theorem:

Q(n
1
) —

Pr(failure about to occur at Stage lIn 1 customers at Stage 1} P(n1)
N

~ Pr{fa!lure about to occur jn
1
} . P(n

1
)

n
1
0 (1)

1
*11 probabilities are assumed to be steady—state.

— 9 —
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where N Is the maximum number of customers in the system. We will

return to Equation (1) In the development of the specific models.

Wi th Q(n
1
) so defined , we can now define availability as:

N
AVAILABILITY Y Q(n1

)

It remains now to f ind  the P (n 1
) us ing the theor y of cycl ic  queues.

L i t e r a tu r e  Review on (
~y~~lIc  Queues and Networks

In the L~urse of research for th is paper more than 40 references

on the subject of cyclic queues and networks were reviewed and categorized.

Networks were included because cyclic queues can be considered as a subset

of networks. Only the three most relevant references to this paper ’s

application are discussed here. The others, dealing with variations such

as travel time between stages (see [9]), are not included .

Table 2 shows the key features of the models presented in the three
• pertinent references. All of the models are multi—stage, all stages have

only exponential service, there is no travel time between stages, and all

customers are identical (I.e., single class of customer). The no travel

t ime rest r iction is no t crucial since travel time between stages can be

handled by simply introducing an ample server transportation stage between
any two stages - in the cyclic queue.

3.1 J. R. Jackson, Referen ce [6)

-; In h is 1957 paper , Jackson proved a theorem for networks in a
steady—state condition. The theorem yields the steady—state joint probability

for the number of customers at each stage. The network has multiple stages.

Each stage has parallel channels, wi th all servers at a given stage having

the same exponential service time distribution . Each stage can also have

external Poisson input to it and can output from the system. Customers

could go from one stage to any other stage in the network (feedback/feedforward)

- 

~~lO 
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according to some known probability distribution. In 1963 171 , Jackson

extended his theorem to allow state—dependent service at any stage .

Before describing the Jackson results , we will first consider a

single MIMIc queue , with input Poisson stream parameter A and exponential

service parameter p • From the well—known results for p , the steady-

- 
state probability that there are n customers in the system (service p lus

queue) ,  given the parameters A , p , and c , are :

- ~~~ 
j-p 0 ; n < c -

p (A ,p,c) = (3)
n 1

I I p , n - c ,
\ IJ , fl—C C)

C .  C

( fo r — < 1)

Jackson considers a network such as the one in Figure 4 , where a

customer’s path through the network is influenced by p
1~ the p robab i li ty

that a customer leaving the jth stage goes to stage I (j-i ,2,. ..

i0 ,l,.. .,K) ; i—0 represents leaving the system and 
~ 

p .. 1 for
• 

- . 
1—0

all j - He defines as the Poisson parameter  of the external input to

stage i, and to be the total mean input rate to stage I. Therefore,

K
— ct~ + 

~ 
1’
1
p 

~ 
- (4)

1—1

Essentially , Jackson’s theorem states that the steady-state loint probability

of 
~l 

customers at Stage 1, n
2 

at Stage 2, . . . ,  at Stage K, can be

determined by f i r s t assuming that  each stage is an independent M/M/c queue
with input parameter and service parameter rate p

1 , then using

Equation (3) at each stage, and then multiplying the results to obtain the

joint probability distribution. This can he written as (for <

fo r all i 1 ,.. .,K)

— 12 —
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~n 1,n 2 , .  . . flk ~~~~~~ 
i—l ,. . . ,K )

— p (T
1
,p

1
,c

1
)p (r 2 ,p 2, c2 ) . .  .P (r K ,P K $ cK ) 

‘ 
(5)

where p (r1,p 1,c1) is determined from Equation (3) w i t h  the parametersn i
substituted accordingly.

Note that Jackson’s theorem does not assert independence of the

stages, just that if independence is assumed, the resulting joint probability

is correct. In his proof, he first sets up the steady—state difference

equations, then postulates the solution, and finally shows that the solu-

tion satisfies the equations.

3.2 E. Koenigsberg, Reference [8]

In his 1958 paper, Koenigsberg looked at a cyclic queue with multiple

stages, but with only a single server at each stage. The service times were

exponential. Since it was a cyclic queue and not a network, there was no

exogenous input or output and no feedback or feedforward , except directly

to the next stage.

The method of Koenigsberg was to set up the differential difference

/N+K-l\
equations for all possible states. The resulting set of 

~ K— I. ) equations

in the same number of unknowns (which is the number of ways to put N in-

distinguishable iteme into K boxes, any number to a box), was intractable

for a general solution. Koenigsberg then postulated the solution, which

satisfied the set of simultaneous state equations when substituted back in.

Were it not for the limitation to a single server at each state, we could

have used Koenigsberg’s results directly for the development of an exact
model for the extended machine repair problem.

3.3 R. Swersey, Reference [10)

Swersey noted in his 1967 paper that cyclic queues are subsets of

networks and he appl ied Jackson’s network results of [6) and [7] to a

— 14 —
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Koenigsberg type of cyclic queue. This amounts to setting x~ to zero

for all I and to one for  j i— l and to zero otherwise in Equation

(4).  Therefore , = for all I , i’l , 2 ,. .. ,K (with the understand-

ing that — ) .  Thus, r is a constant (to be determined) throughout

the system. This means that in steady state, the input rate to any stage

is a constant , and if the cyclic queue is cut at any point between any two

stages, the same constant flow rate of customers, 1’ , would be observed.

Under the restrictions that the sum of customers is constant (N)

and that the joint probability must integrate to unity, the Jackson theorem,

as applied by Swersey, can be used to solve for steady—state probabilities

for cyclic queues.

4. Formulation of the Exact and Approximate Models

4.1 The Exact Model

By the Jackson theorem, Equation (5) gives the steady—state joint

probability where Equation (3) yields the individual factors in the ex-

pression.

Applying the Swersey analysis (i.e., r a constant) yields

- n n n
/r \l ~ I r  \2 

~ I r  \K ~
— 

b I~7j) ~~ P0 P0 
...

K K I~~~\~ 
i— -ji ll p0 

Tl~~~—) ~~
-_

I i—l P~

where p - is the steady—state joint probability that there are

customers at Stage i, for i going from 1 to K. For i l ,2,...,K

a
1
! ;

b1 
— n

1
—c

1d I d  , ni > d i

— 15 —

_____________________________ — _~ *•~~~ - - — :—



~~~~~~- — -

T— 346

K
, n~ 

— number of customers at Stage i ( ~ n~ = N )

i—i

c~ = number of parallel servers at Stage I
- 

p
1 mean service rate of each server at Stage I

p0 steady—state probability that there are zero customers
I at the ith stage when the ith stage is treated as an

independent M/M/c
i queue with Poisson input r and

service rate p
1 -

Since the first factor does not depend on n~ , it can be found

by the suamlation to unity criterion. Denoting It by A
1 , we can write

n
K /p \

i

p — A  II ( — ~I -i— , (6)

~l’~
’2’”~ ~

n
K 1 

~~ 
\U1/ b1

where A
1 , then , is given by 

K ~~ \~A1
’ = ~ fl L (7)

S
1 

i—i \~~i F  i

and

K
S1 {n 1, i— l ,2 ,.. . ,K : 

~ 
n
~ 

= N) . (8)
i— i

In the above “constant of Integration ,” A1 , the suiwnation is taken

over all possible partitions of the N customers into the K stages.

Note that the joint probability in Equation (6) no longer involves the un-

known steady—state system flow r , since it has been incorporated into

the constant of integration.

To determine the marginal probabili ty for the number of customers
at Stage 1, a1 , we must sum the join t probability over all part i t ions of

N-n
1 

into K—i stages , i.e., over the set S2 , where

— 16 —
~~~ ~ _ I 
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K
S
2 

{n
1
, i—2 ,3,.. . ,K : ~ n

1 
= N— n 1

} . (9)
1=2

Letting P
F
(n

l
) represent the steady—state “exact” (since we will

be comparing th i s  exact model to an approximate model mentioned later)

marginal probability that there are n 1 custome rs at Stage 1 ,

K / jj
— A

1 ~ n k_ i ) L— . (10)
S2 1—2 ~~ I

To determine the availability of spares, we must first determine

the failure point probability, Equation (1). (Note that 
~~~~~ 

Equa-

tion (10), is a general time probability.) Since we have an exponential

service discipline,

Pr{failure about to occur at Stage l~n1 
customers at Stage 1)

— 

n
1
p
1
At + o(L~t) ; n

1 
< c

1
— 

c
1
p
1~

t + o(At) ; n
1 

> c

Equation (1) can now be written (with subscript E added to denote this

exact model) after dividing numerator and denominator by t~t and taking

u r n  , as
/~t4O

A
3
n,ii1 

P~(n1
) ; n

1 
< c

1
= 

‘ 
(11)E A

3
c
1
p
1 ~E~

’l~ 
fl
1 

> c
1

where

C
l

4 A
3
’ 

n~ ’0 
n
1
p
1 ~~~~~

(12)
N

+ ~ c11.
i
1 ~~~~~~ 

-

n1 c1
+i
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Equation ( 2 ) ,  the expression for the availability, now becomes

(agai n wi th  the subscri pt E added)

N N
AVAILE ~ ~~~~~~ 

= A
3
c
1 1J 1 ~ 

‘F~~
’l~ 

(13)
n1 c1+l n 1~~~1 +1

Equation (13) is the availability of the system. It requires Equa-

tions ( 12), (10), and (7) to compute , but the availability can be expressed

totally in terms of the system parameters p1,c 1 
(1=1 ,... ,K) , N , and K

Note that the constant A
3 , In Equation (12), requires the evalua—

tion of 
~~~~~~ 

fo r a l l  n 1 from 0 to N, t he maximum in the system. This

is a key point in discussing the computationa l efficiency of the exact and

approximate models.

4.2 The Approximate Model

Consider an MIMIc queue with input parameter A and service rate

p . The s teady—sta te  p robab i l i ty  that  there are n In the system is given

* by Equation (3). Burke, in his 1956 paper [21, proved that the output from

that queue was Poisson with parameter A . Thus, the output is independent

of the service rate mean , p as long as the service t ime is exponentially

dist r ibuted.  Burke also reasoned in h i s  1972 paper [3), that since A in

results in ~ out , then a series of M/M/c queues could be formed with A

in at one end and A out at the other , as indicated in Figure ~~~. Each

stage is independent of the other stages and the steady—state joint probabil-

ity could be found by multiplying the probability from Equation (3) fo r each

stage.

The crux of the approximate model is the assumption that the first

stage, the operating machine stage, is almost always operating at fu l l  ca-
pacity, i.e., all machines are up. (This is the implication of a high

availability constraint.) Then the output from the first stage is a pure

Poisson process with parameter c1
p1 and the first stage acts li ke an

in f in i te  source input to the res t of the system.

— 18 —
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A ...—...=..—,~~~~ .....~~~ A. . . A.......~ A
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T 

-

Figure 5. ——Burke series queue.
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Stages 2 through K can now be treated as the Burke series of Fi gur e
5 , and the jo in t  p r o b a b i l i t y  tha t  there are n 2 in Stage 2 , n 3 In Stage

••
~~ 

n~ in Stage K is

____ 
1

• ‘~
‘K 

= 

~\ 
~~2 I ~~ ~o 

~~~K ) 
b
K °K 

( 14)

where for i 2 , . . .  ,K

n
1
! ; fl1 < c

1
b
1 ‘1i~~1

C
1
! C

1 ; n
~ 

> C
1

< c1p 1 for  i 2 ,. .. , K and p0 = probability there are zero cus—
I

tomers at the ith stage.

After  suimning over all  possible n 1 to get the “constant of inte-
gration,”

K /c ~p A 11 l__ i~
1
~J ~~~~~~~~~~ (15)n2,n3

,. ••‘°K 2 i=2 \ p1 , h
1

whe re

A;’ - 

K 
(c

uP
l)

1 

= 

K ~~~ 
(clPl~~~

i 2  n1 0 i 1 1=2 n 1 0 i i

(16)

+ 

~~~~~~ 

_ _ _ _

c1~ \ ~ / \c 1~J 1—c 1~J 1

K
At this point there is no restriction on ~ n 1 because with an

i—2

in f in i t e  source at Stage 1, any system size is possible. However, in the

K
real environment, there is a constraint, namely ~ — N—n

1 , where N
1—2

— 20 -
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is the total population in the system and n
1 

is the number at Stage 1, the

“infinite source. ” Therefore , the p r o b a b i l i t y  tha t  there are n
1 at St age

1 is set equal to the probabi l i ty  tha t  N—n
1 

are in the rest of the system ,

i .e. ,  the sum of the probabil ities of all the possible ways N—n
1 

customers

can be parti t ioned Into K— l stages.

Lettin g PA (n
l ) be the approximate model’s stea dy—state  probabil i ty

that there are n
1 

at Stage 1, we have

K I c  p
— A

2 s2 1=2 
~ 

1 1

) 
~~ ( 17)

where

K
S
2 

— 

~~~ 
1—2 , 3, . . .  ,K ~ n1 = N—n

1
)

1=2

A2 is given by Equation (16), and Equation (15) has already been sub—

stituted for the join t  probabil i ty function .

It is well known that for M/M/c queue s ,

— 
~~~~~~~~~~~ 

(18)

By the definition of availability, Equation (2), we can now write (with

the subscript A added to denote the approximate model)

N
AVAILA - 

~ 
Q~, (n1

)
n c + l

N
— 

~~ 
PA (n l

) . (19)
n c+ 1

— 2 1 —
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Equation (19) is the availability of the system. Jt requires Equations

( 17) and ~l6) to compute , but the availability can be expressed totally

In terms of the system parameters p
1 , c~ (1’l ,... ,K) , N , and K

Note that Equation (19) requires only the evaluation of

for n
1 

> C
1 

. This is a key point in discussing the computational effi-

ciency of the exact and approximate models.

4 .3  Summary of Algebra and Some Inequalit ies

Exact model: The exact , marginal , general time probability that

there are a1 customers at the f i r s t  stage is

— A
1 ~ n (~_-i) ~~~~~ , (10)
S2 i— u i I

P where -
~

- 
‘ a

A~
’ — ~ fl (ti) L (7)

- - S1_ 1—1 1
~i I

K
S = {n , i—2,...,K : n = N—n }
2 i 1 1

1—2

K
5
~ 

— {n~ , i l ,2,... ,K : ~

‘ 
n1 

N)
1—1

b
1 

— n
1~~jc1. c i

The exact, failure point probability that there are customers at

the first stage given that a failure is about to occur is

A
3 
n
1
p
1 ~~~~~ 

.~~ C
l

~~~~~ — , (11)
A3 c1

p~ PE (n l
) ; a

1 
> c

1

— 22 —
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where

C
l N

A;’ — 
~ ~~~~ 

+ y c
1
p
1 ~~~~~ 

(12)
n 0 n

The probability that there are spares available given that a failure is

about to occur is

N N
AVAIL

E ~ Q(n
1

) = A
3 

c
1
p
1 ~ ~E~

fl
l~ 

(13)
n
1
c
1
+l n

1
c
1
+l

Approximate model: The approximate , marginal , general time probabil—

itv that there are n
1 

customers at the first stage is

I

~~~~~~ 
= A

2 

~ 1
1=2 

(ciP
u) 

~~~~~ ~~~

, ( 17)

where

A;’ = 

i~2 I ~ 
(C iP

i) 
~~ 

~~~~, (16)

and S2 , b
1 

as above in the exact model.

- The approximate failure point probability that there are n
1 

cus-

tomers at the first stage given that a failure is about to occur is

~~~~~ 
— P

A
(n
l) . (18)

The probability that there are spares available given - that a failure is
- - about to occur is

N
AVAILA ~ “A~~ i~ 

(19)
n c  +1

Inequalities: Wi th the above algebra summarized , it can be shown
(see Appendix) that for  n 1 > c

1

— 2 3 —
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— 
~~~~~ 

-- 

~~~~~~ 
-

Therefore,

N N N

~~ 
— ~~ 

P
E
(
~ l
) 

— 
~~n 1 c1+l n 1 c1+1 n 1 c 1+1

or

AVAILE 
> AVAIL

GE 
> AVAIL

S , (20)

where

N
AVAIL

CE 
= ~: ~~~~~ 

(21)
flu

_c 
1
+1

and where the subscript CE represents an availability determined by using

the general time probability (versus a failure point probability) from the

exact model.

Inequality (20) is a key result. It shows that for a given set of

system parameters (N, c~ , 1i
1
, i 1 ,... ,K) , the true (exact) availability

of the system is greater than that predicted by the approximate model or by

using the general time probability (versus the failure point) of the exact

model.

In other words, the approximate and GE availabilities are conserva—

tive, I.e., if one uses the approximate or GE approach to determine system

parameters to yield a certain availability, then the true system avail-

ability will actually be greater than the original target.
“I

4.4 Relationship Between the Two Models

The exact model development involves the concept of a fixed f low

rate r throughout the cycle. Consider the f low coming out of the f i r s t
stage . If there is only one customer in service, the output rate from the
stage is equal to the service rate , p

1 , for one channel. If two are in

service , the output rate is 2Ii
~ 

. The output rate increases l inear ly

with the number of customers in service, up to the maximum service rate of

— 2 4 —
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c
1
p
1 - These different output rates , w.~ig ht ed ~v the pr~babiHty of each

rate , are what mak e up I’

In the exact mode l ,

C l Nr — 
~ ~i~ l 

P~~~1
) + ~ (-

1
:1

1 ~F~°1~n 1
mO n 1 c 1+1

or , a f t e r  some algebra ,

C
l

I’ = c
1
p~ 

— 
~~ 

(c l
_ n

l )P
E (nl

) , (22)
—0

The second term is negligible under a high availability constraint
(i.e., there is probably a queue at Stage 1 , which implies n

1 is probably

greater than c
1 , which implies small for n

1 
< c

1 
). Therefore,

under a high availability constraint,

(23)

which is a pure Poisson output with parameter c 1p1 . This is what the

approximate model uses as output from its first stage (“infinite source”)

and input to its second stage.

In st~~ ary, the exact model uses r from Equation (22) and the

approximate model uses r from Equation (23).

5. Co~~utationaI
~~ 5.1 Data

The following data were obtained from [51. The application was to
a fleet of gas turbine engine ships , where the decision variables were the

number of spare engine parts to supply and the number of repair channels

to provide in order to minimize costs and to satisfy a high (.90) avail—

ability constraint. Each engine had t:o components , a gas generator and a

____  _ _ _ _ _ _ _ _ _ _  -- _ _ _  _ _ _ _ _ _ _ _ _
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power turbine , requiring separate repair facilities ; however, only one

component will be analyzed here. There are four stages: operating,

removal, transportation , and repair. Two cases are examined , one where it

is desired to have 10 operating engines, and the other where it is desired

to have 28 operating engines. The removal and transportation stages have

ample servers, i.e., no queues ever form in front of Stages 2 and 3. The

parameters for the gas generator component (the more critical of the two)

are given below :

— failure rate = .00147186 failures/day

— removal rate = .5 removals/day

U3 
— transportation rate .1 transports/day

p
4 

— repair rate = .01887 
- 

repairslday

or, in terms of the inverses,

1/p
1 

= 679.4 days between failures

1/p
2 

2 days to remove a machine

1/p
3 

— 10 days to transport a machine

1/p4 
— 53 days to repair a machine

= 10 ; 28 — number of operating machines

— c
3 

— “~~~“ — ample servers for removal and
transportation.

Decision variables:

c4 = number of repair channels at the repair facility

- N — total number of customers in the system number
of spares + C

1

Reference [SI defined an objective function using cost data to arrive

at optimal values for the decision variables (number of spares, number of

repair channels). In this paper no objective function will be formed .

Only the effect of varying the decision variables on the availability for

the exact and approximate models will be analyzed for the purpose of de—

termining the accuracy of the approximate model.

-26 -
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5.2 Discussion of Results

Figure 6 shows th e results for the case with 10 operating engines

(c
1 

— 10) . The abscissa is the number of repair channels , c4 , at the

fourth stage (Stages 2 and 3 have ample , or infintte , servers),, and the

ordinate is the availability of spares.

The curves plotted represent the avai labi l i ty  as a function of c4
for a fixed number of spares. The avai labi l i ty  is computed three ways :
by the exact model , AVAIL~ , Equation (13); by the approximate model, AVAIL

A
)

Equation (19); and b” the general time probabili ty of the exact model ,
AVAILGE, Equation (21). Note how the computed availabilities are consistent

with Inequality (20), which shows the GE and approximate models to be

conservative.

Just to the right of the model designation (AVAIL
E. 

etc.) is the

computer time and percentage error. The time is the average number of

“system seconds ” (a combination of compilation , execution , input /output ,
e tc . )  of computer time used in the calculation of any given point on that
curve. The percentage error is relative to the exact model and is computed

af te r  the apparent asymptote has been reached . Percentage errors are also
shown at two other points on each curve , before the asymptote is reached.

- For example , for the one spare case , the approximate model took
about 3. 1 system seconds to compute each point on the curve (which is com—
posed of about five points), and the error was about 4% for points with

- more than three servers . This error increased to 6% for two servers , and
to 36% for one server. Note that the number of servers is with respect to
the fourth stage of this cyclic queue ing system.

The results indicate that the availabil i t ies quickly approach hor i—
sontal asymptotes as the number of servers increases, in addition , the
asymp totes for E, GE and A more quickly approach each other as the number
of spares increases , i.e., the percentage error from not using the exact
model decreases .

- — 2 7 -- 
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Figure 6.—-lO operating machines (H — c - 10). ., 

-

1 

-28 - 

_____—,___ -- - —



_____________________- - S~~~~~ - _ — — S -- -

1—346

A key observation is that if the availability were constrained to

be “high ,” say .9 , then the objective function for a par t icular  application

would only be evaluated over a region where the number of servers is greater

than two and the number of spares is greater than three. In this region ,

the approximate and exact models, as well as the exact general time probabil-

ity approach, yield almost the same results.

In Figure 7 we have similar trends for the case where c1 
= 28 (i.e.,

28 machines are to be operating). Here an availability constraint of .9

would force the objective function to a range in which there are at least

four servers and six spares. Again, the approximate model and the exact

general time approach yield very good results with respect to the exact model.

However, note how the computer times vary. The approximate model takes

only about one—sixth of the time for almost the same accuracy.

This time difference can be explained by looking at the algebraic

sunuary , Section 4.3. It takes more time to compute the constant of inte-

gration , A
1 , Equation (7) , for the exact model (versus A2 , Equation

(16), of the approximate model), but this is but a small part of the dif-

ference. Equation (13) for the exact model requires the computation of

a constant A
3 , Equation (12), which involves 

~~~~~ 
for all n

1 
from

0 to N, the Ilaximum in the system. On the other hand , the approximate

model only involves 
~~~~~ 

for n
1 

from c
1
+l to N in Equation (19).

Considering that for each value of n
1 

both the exact and the approximate

models must go through the partitioning of N—n
1 

customers into K—l sub-

sets (i.e., the set S
2 in Equations (10) and (17)), the approximate model

becomes increasingly easier than the exact model to evaluate as N increases

(where N — c
1 
+ number of spares). Thus, for c

1
1.0 (and N ranging from

11 to 15) the time differences were relatively great, but in magnitude not

startling; whereas for c
1
28 (and N ranging from 30 to 34), the computa-

tion time differences were significant , both relativel y and absolutely.

—29 —
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When comparing the approximate model with the general time prob-

ability of the exact model in Equation (21) (the GE model), the approximate

model is faster  than the GE model due to the time involved in computing the

const an ts A2 and A1 , Equations (16) and (7), respectively . However, this

general time probability from the exact model approach still yields substan-

tial time savings over the exact model because the constant A
3 , Equation

(12), is not involved in the GE model.

Some observations on the asymptotic behavior of availability are

worth noting. Figures 6 and 7 clearly indicate that availability can he

increased only to a certain value as the number of servers at Stage 4 is

increased (for a constant number of spares). Obviously, when the number

of servers exceeds the total population in - the system, the availability

can no longer be affected. But the asymptote is reached lon~, before the
number of servers becomes “ample” at Stage 4.

There appears to be a similar asymptote for availability given a

fixed number of servers and an increasing number of spares (i.e., a vertical

cut in Figures 6 and 7 to derive a cross plot). If contours of constant

availability in server—spare space are plotted , a picture such as Figure 8
results.

One final note on FIgure 7: for less than three servers at Stage 4,
the approximate model cannot be used because the condition c

1
1j
1 

< c
1
p
1 

for

i—2 ,... ,K is not satisfied. Thus, the approximate model has a limit on its
applicability. However, the approximate model was formulated with a high
availability constraint at Stage 1 in mind. For c

1
p
1 

> c4
p,~ there is

great congestion at Stage 4 rather than at Stage 1, and the high availability

constraint at Stage 1 is not satisfied.

6. Conclusions

This paper has formulated and compares an exact and approximate

model to handle an extended machine repair with spares problem. Under a

—31 —

.

.

-

~

— - - - ~~~~~~ 
~~~~~~~~~~~~ - -S  — ~~—



- 5--  .— —S - - — - 
~~~~~

T— 346

Constant Availability

S .7

Number of Servers

Figure 8. ——Contours of availability vs. spares and server..
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“high” availability constraint , the approximate model was shown to be coapu—

tationally more efficient and almost exact in its results . Furthermore,

the approximate model was shown to be conservative , i.e., it always under-

estimated the true availability of the system.

A third approach to computing availability was investigated . This

involved using the general time probabilities from the exact model (versus

the exact failure point probabilities). The results were between the exact

and approximate models in computation time and precision .

The main conclusion , then, is to use the approximate model if a

“high” availability constraint is present , and the exact model otherwise.

Ic fact, one may be forced to use the exact model for situations where

c
1
p
1 

is not strictly less than c
iP1 

for 1 2 ,...,K (which violates the

basic assumption of an M/M/c queue). In those low availability cases where

N is “large,” the general time (versus failure point) probabilities for the

exact model can be used to save computer time.

33
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APPENDIX A

Proof That 
~‘~E~~’l~ ~ P~ (n 1) 

~~ ~~~~~ 
for n

1 
> c

1

This appendix proves algebraically that the failure point prob—

ability in the exact model is greater than or equal to the general tine
-

- 
probability in the exact model, which is greater than or equal to the failure

point probability in the approximate model , for n
1 

customers at Stage 1,

when n
1 

is greater than c
1 , the number of servers at Stage 1.

Since 
~~~~~ 

— 

~~~~~ 
(i.e., the approximate model failure point

and general time probabilities are equal), then we want to show

> P~(n1
) > P~(n~) , for n

1 ~~- c
1 , (A l)

where , repeating relationships and notation here for convenience ,

failure point probability in the
exact model that there are exactlyg fl
1 

customers at Stage 1

= A
3
c
1~i1 

P
E
(n
l) ; n1 

> c~ . (11)

PE (n l ) general t ime probability in the exact
model that there are exactly n

1
customers at Stage l

S

K U

— A
l S2 t i~l (~i) 

~ 1 (10)

P
A
(S

1
) — general time probability In the ap—

proximate model that there are exactly
n
1 

customers at Stage 1

-- 
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— A
2 s2 ~i—2 

(c3U
i)

’ 

~~~ 

(17)

A~j
’ — 

~ ~~K ( P
)

1 
(7)

A;
1 

— 

i~ 2 f niL U1
1~~~ ~ (16)

c1 N
A
3
1 

= ~ n
1
jJ
1 
P
E
(n

l
) + ~ c~ j i1 P~ (n1

) (12)
n
b 

n1
c
1
+1

— number of parallel servers at Stage i,
1=1 ,2 , . . .  ,K

— service rate of each server at Stage i,
i— l , 2 , . .  .

n
i 

— number of customers at Stage i, i=1 ,2,... ,K

K total number of stages

N — total number of customers in the K stages
K

~
i—i

n
1

< c
1

— n
1~

c
1 

- (A2)
c1

I c
1 ;

K
S2 

— {n~; i—2,3...,K : n
1 

N—n
1

} (9)
1—2

K
S
1 

— (n
i
; i 1 ,2,.. .,K : ~ n

1 
— N) . (8)

i—i

With the notat ion established , consider first the inequal ity

- 3 6 —
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?

Q~ (n 1
) > PE (n l ) ; n 1 > c1

Substituting (11) and (12),

~~~ 
~
‘
E~~l~ 

?
> P (n i )C

l N E

~ 
fl
1U

1 
+ ~ c~~i1 PE

(n
l)n

1—O n1 c
1+l

Under the reasonable assumption that 
~~~~~ ~ 0 for n

1
=0,1,. . .,N , the

above reduces to

? C
1 N

> 
~ 

n
I
P
E

(n
l

) + ~ c
1
P~(n1)n

1
c
1
+l

N
Since ~ P (n ) = 1 , c can be written as

n1
0

C
1 N ? c1 N

— 
~~ 

c1
P
E
(n

l
) + 

~~ 
clPE (n l ) 

-~~ 
~~ ~~~~~~~~~~lS~~~

- 
+ 

~~ 
C
1
P
F
(n

l)n1
0 n

1
c
1+1 5l

0 ni
_c +1

which reduces to
- S 

~1 ? 
c
1

~ 
c
1
P
E
(n

l
) 

.~~ ~~ 
nl
P
E

(n
l
)

n 0  n 0

which is true since n
1 in the right— I~and summation is always less than or

equal to c
1 . Therefore,

- {Q ~~~
(

~~~i
)

-
~~ 

P~ (n 1) 
~ > c~~

Now it remains to prove the second part of Inequality (Al):

- 
* 

~~~~~ ‘
~~ ~~~~~~ ~ C

1

Substituting (10) and ( 17) ,

— 37 —
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A
i 

~2 
)~

(
~

) kj -~~ 
A2 

~2 ~ i*. 2 
(i~1)

i 

~ 

-

In order to get some cancellations , we change the index In the product term
on the left—hand side and remove c

1 from the produc t term (noting that

K
n
1 

N—n
1 

) on the right—hand side.
1—2

Ai 

~2 J~ 
j=2(’~1) 

f-~ 
> A

2 

~ J
~ 1~i 1=2 C1~

) 
~j-

On the lef t—han d side , using (A2),

Under S
2 

from (9), n
~ 

Is a constant , and we can move terms outside

the summations to get - -

or 

c~~! :~ ‘~~~ L ~~~~~ ~2 

:~
‘h2 1..2(1’l) 

~
-
~

- (

c
1
! c

1

Now subst i tute (7) and (16):
9—__ 

_ _  1

ci,! 
N-c~ 

S2 ~~~1*Il J 
(~5i~j 1—2 ~~~~

Noting c
1 

— c
1 

• c2 ... , and by changing the Index on t h e  product

term on the left—hand side, and by inverting both sides and changing the

direction of the inequality ,

— 3 8 —
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~ L~ 
I~2 (u 1) 

~
( i 2  ~n 

~ 
~~~~~~~~~~~

. (A3)
1 c

1 b
1 i

Let

r

~~~~~~~
i
1
i .C

l 
-

c
1 b

1

Since we are considering only n
1 

> c
1 , then by (A2), b

1 c
1
! c

1
1 ’  and

r — 
c
1 ! c1

’ 
= 1C

l1 . 
n i—c

lC
1 ~c1

. c
1

Now letting

n5 — 

1
1S 

~~~~~~ ~~~~~~~~~,

we can write - -

K - 

K ? K
~ r f l f 1 —~~~~~ l l f~ < H
S1 1—2 S1 i—2 1—2 n

1”O

* It now only remains to show

K ? K
~ 11 f

1 
< 11 

~~ f
1 -

S
1 1—2 1—2 n

1
—0

Under S1 , the sum of n
1 over all i is restricted to N • Since

n
i
1the 

~~ 
factor , —

~~

-—- ç- is always positive , then

— 3 9 —
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K N N N K
IT ... ~ II f~

S
1 

i 2  
~K
° 
~K—1

0 n
2 0 1 2

which simply bounds the summation over the restricted set S
1 

to more

manageable summatIons to N . Therefore, the final step is to show

N N N K ? K

~~~~~~~~
• . .  

~~ ~ ~~~f1 .:~ 
f l  ~~~~~~~

n~~0 n
3
0 nfO i 2  i 2  n~~O

Substituting the value of f
1 , the ineq ua l it y  to prove now is

fl2
0 (

~~~
l)

2
1 (c~

U~

)

3
~~ 

(c
~~~

)

K

(
~ (

~~~~
\
2 ~ (

~ (
~~~~

\
3 \ ( r n

\n2
’ø\ p2 / b

2J 
\ ,,~\ p

3 / b
3J
”
~~~~~0 ~ i~~~ . / b

K

it is clear that  the produc t of i n fin i t e  sums on the r i g h t - h -  -
~~~ side will

generate all the terms generated by the finite sums of th~ - p , - - icts on the

l e f t—hand  side plus an i n f ini t e  number more of mlscell;,n*- us - s s  products.

Since all terms are positive , the inequality is ~atis fI*d . 1 ‘~-refore ,

- ~~~~~ ~ ~~~~~ 
~ n

1 
> c
i] 

-

This ~umpietes the proof,

LQE
~~

1 -
~ ~~~~~~~~~~~~~ 

n
1 

c
i J 

. (Al)
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